Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Physiol ; 12: 611772, 2021.
Article in English | MEDLINE | ID: covidwho-1154242

ABSTRACT

BACKGROUND: Renal involvement in syndrome coronavirus 2 (SARS-CoV-2) infection has been retrospectively described, especially acute kidney injury (AKI). However, quantitative proteinuria assessment and its implication in coronavirus disease 2019 (COVID-19) remain unknown. METHODS: In this prospective, multicenter study in France, we collected clinical and biological data including urinary protein to creatine ratio (UPCR) in patients presenting with moderate to severe COVID-19. Clinical outcome was analyzed according to the level of UPCR. RESULTS: 42/45 patients (93.3%) had renal involvement (abnormal urinary sediment and/or AKI). Significant proteinuria occurred in 60% of patients. Urine protein electrophoresis showed tubular protein excretion in 83.8% of patients with proteinuria. Inflammatory parametersand D-dimer concentrations correlated with proteinuria level. Patients who required intensive care unit (ICU) admission had higher proteinuria (p = 0.008). On multivariate analysis, proteinuria greater than 0.3 g/g was related to a higher prevalence of ICU admission [OR = 4.72, IC95 (1.16-23.21), p = 0.03], acute respiratory distress syndrome (ARDS) [OR = 6.89, IC95 (1.41-53.01, p = 0.02)], nosocomial infections [OR = 3.75, IC95 (1.11-13.55), p = 0.03], longer inpatient hospital stay (p = 0.003). CONCLUSION: Renal involvement is common in moderate to severe SARS-CoV-2 infection. Proteinuria at baseline is an independent risk factor for increased hospitalization duration and ICU admission in patients with COVID-19.

2.
Front Med (Lausanne) ; 7: 603961, 2020.
Article in English | MEDLINE | ID: covidwho-1083700

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan in December 2019 and has since spread across the world. Even though the majority of patients remain completely asymptomatic, some develop severe systemic complications. In this prospective study we compared the immunological profile of 101 COVID-19 patients with either mild, moderate or severe form of the disease according to the WHO classification, as well as of 50 healthy subjects, in order to identify functional immune factors independently associated with severe forms of COVID-19. Plasma cytokine levels, and cytokine levels upon in vitro non-specific stimulation of innate and adaptive immune cells, were measured at several time points during the course of the disease. As described previously, inflammatory cytokines IL1ß, IL6, IL8, and TNFα associated with cytokine storm were significantly increased in the plasma of moderate and severe COVID-19 patients (p < 0.0001 for all cytokines). During follow-up, plasma IL6 levels decreased between the moment of admission to the hospital and at the last observation carried forward for patients with favorable outcome (p = 0.02148). After in vitro stimulation of immune cells from COVID-19 patients, reduced levels of both type I and type II interferons (IFNs) upon in vitro stimulation were correlated with increased disease severity [type I IFN (IFNα): p > 0.0001 mild vs. moderate and severe; type II IFN (IFNγ): p = 0.0002 mild vs. moderate and p < 0.0001 mild vs. severe] suggesting a functional exhaustion of IFNs production. Stimulated IFNα levels lower than 2.1 pg/ml and IFNγ levels lower than 15 IU/mL at admission to the hospital were associated with more complications during hospitalization (p = 0.0098 and p =0.0002, respectively). A low IFNγ level was also confirmed by multivariable analysis [p = 0.0349 OR = 0.98 (0.962; 0.999)] as an independent factor of complications. In vitro treatment with type IFNα restored type IFNγ secretion in COVID-19 patients while the secretion of pro-inflammatory cytokines IL6 and IL1ß remained stable or decreased, respectively. These results (a) demonstrate a functional exhaustion of both innate and adaptive immune response in severe forms of COVID-19; (b) identify IFNα and IFNγ as new potential biomarkers of severity; and (c) highlight the importance of targeting IFNs when considering COVID-19 treatment in order to re-establish a normal balance between inflammatory and Th1 effector cytokines.

3.
Front Med (Lausanne) ; 7: 608804, 2020.
Article in English | MEDLINE | ID: covidwho-1081183

ABSTRACT

Frontline health care workers (HCWs) have been particularly exposed to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) since the start of the pandemic but the clinical features and immune responses of those infected with SARS-CoV-2 have not been well described. In a prospective single center cohort study, we enrolled 196 frontline HCWs exposed to the SARS-Cov-2 and 60 patients with moderate and severe forms of the coronavirus disease 2019 (COVID-19). Serological tests and cytokines assay were performed to analyze SARS-CoV-2-specific humoral and cellular immunity. Of the 196 HCWs tested, 15% had specific antibodies against SARS-CoV-2 and 45% of seropositive HCWs were strictly asymptomatic. However, in comparison to moderate and severe forms, HCWs with mild or asymptomatic forms of COVID-19 showed lower specific IgA and IgG peaks, consistent with their mild symptoms, and a robust immune cellular response, illustrated by a high production of type I and II interferons. Further studies are needed to evaluate whether this interferon functional immune assay, routinely applicable, can be useful in predicting the risk of severe forms of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL